Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35406234

RESUMO

As a new type of energetic material, reactive materials are widely used at present; in particular, the metal/polymer mixtures type reactive materials show great advantages in engineering applications. This type of reactive material has good mechanical properties, and its overall performance is insensitive and high-energy under external impact loading. After a large number of previous studies, our team found that the energy release characteristics of PTFE/Al/Si reactive material are prominent. In order to master the mechanical properties of PTFE/Al/Si reactive materials, the quasi-static mechanical properties and dynamic mechanical properties were obtained by carrying out a quasi-static compression test and a dynamic SHPB test in this paper. Based on the experimental data, a Johnson-Cook constitutive model of PTFE/Al/Si reactive material considering strain hardening effect, strain rate hardening effect and thermal softening effect was constructed. The relevant research results will be used to guide future research on the reaction mechanism of PTFE/Al/Si reactive materials, in order to promote the engineering application of PTFE/Al/Si reactive materials.

2.
Sci China Life Sci ; 65(2): 376-386, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34024027

RESUMO

Circular RNAs (circRNAs), a novel class of non-coding RNAs with a loop structure, have recently been shown to participate in various pathophysiological processes. However, the precise role of circRNAs in myoblasts remains unclear. In this report, circSVIL was screened and identified from our previous sequencing analysis; we then performed gain- and loss-of-function experiments on bovine myoblasts by CCK8, EdU, flow cytometry, qRT-PCR, and Western blotting. The results indicate that circSVIL facilitates bovine myoblast proliferation and inhibits cell apoptosis. Using mechanism assays such as bioinformatics prediction, RNA immunoprecipitation (RIP), and cytoplasmic separation, we demonstrate that circSVIL could interact with STAT1 and inhibit STAT1 phosphorylation, thereby restraining STAT1's nuclear translocation and affecting its downstream signal cascade. Our results may elucidate a new regulatory pathway for bovine skeletal muscle development.


Assuntos
Desenvolvimento Muscular/genética , Mioblastos/citologia , RNA Circular/genética , Fator de Transcrição STAT1/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apoptose/genética , Bovinos , Núcleo Celular/metabolismo , Proliferação de Células/genética , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/metabolismo , Fosforilação , Fator de Transcrição STAT1/genética
3.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297338

RESUMO

Exosomes are endosome-derived extracellular vesicles that allow intercellular communication. However, the biological significance of adipocyte exosomal RNAs remains unclear. To determine the role of RNAs from bovine adipocytes and exosomes in bovine adipogenesis, exosomal and nonexosomal RNAs were extracted from three bovine primary white adipocyte samples and then profiles were generated using DNBSEQ/BGISEQ-500 technology. The RNAome of adipocytes consisted of 12,082 mRNAs, 8589 lncRNAs, and 378 miRNAs for a higher complexity that that detected in exosomes, with 1083 mRNAs, 105 lncRNAs, and 48 miRNAs. Exosomal miRNA-mRNA and lncRNA-miRNA-mRNA networks were constructed and enrichment analysis was performed to predict functional roles and regulatory mechanisms. Our study provides the first characterization of RNAs from bovine adipocyte and exosomes. The findings reveal that some RNAs are specifically packaged in adipocyte-derived exosomes, potentially enabling crosstalk between adipocytes and/or other cells that is mediated by exosomes. Our results greatly expand our understanding of exosomal RNAs from bovine adipocytes, and provide a reference for future functional investigations of adipocyte exosomal RNAs under normal physiological conditions.


Assuntos
Adipócitos/metabolismo , Exossomos/metabolismo , Transcriptoma , Animais , Bovinos , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Cell Prolif ; 53(7): e12857, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578911

RESUMO

Exosomes are membrane-bound extracellular vesicles that are produced in the endosomal compartment of most mammalian cell types and then released. Exosomes are effective carriers for the intercellular material transfer of material that can influence a series of physiological and pathological processes in recipient cells. Among loaded cargoes, non-coding RNAs (ncRNAs) vary for the exosome-producing cell and its homeostatic state, and characterization of the biogenesis and secretion of exosomal ncRNAs and the functions of these ncRNAs in skeletal muscle myogenesis remain preliminary. In this review, we will describe what is currently known of exosome biogenesis, release and uptake of exosomal ncRNAs, as well as the varied functions of exosomal miRNAs in skeletal muscle myogenesis.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Animais , Humanos
5.
Mol Ther Nucleic Acids ; 19: 1086-1097, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32045877

RESUMO

Myogenesis is controlled by a well-established transcriptional hierarchy that coordinates the activities of a set of muscle genes. Recently, roles in myogenesis have been described for non-coding RNAs, including a role of circular RNA (circRNA) to regulate muscle gene expression. However, the functions of circRNA and the underlying mechanism by which circRNAs affect myogenesis remain poorly understood. In this study, we analyzed circRNA high-throughput sequencing results of bovine skeletal muscle samples and constructed a circRNA-miRNA-mRNA network according to the competitive endogenous RNA (ceRNA) theory. The putative circHUWE1-miR-29b-AKT3 network was analyzed and its involvement in myogenesis was confirmed through a series of assays. To assess the potential function of this regulation, bovine myoblasts were infected with overexpression plasmids and small interfering RNAs (siRNAs) that target circHUWE1. Next, cell proliferation, apoptosis, and differentiation were analyzed using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, western blotting, and qRT-PCR assays. The results suggest that circHUWE1 facilitates bovine myoblast proliferation and inhibits cell apoptosis and differentiation. Next, bioinformatics, dual-luciferase reporter assay, and AGO2 RNA immunoprecipitation (RIP) approaches were used to verify the interaction between circHUWE1, miR-29b, and AKT3. Subsequently, we identified that circHUWE1 could directly interfere with the ability of miR-29b to relieve AKT3 suppression, which ultimately activates the AKT signaling pathway. These findings suggested a new regulatory pathway for bovine skeletal muscle development, and they also expand our understanding of circRNA functions in mammals.

6.
Int J Biochem Cell Biol ; 117: 105621, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568883

RESUMO

Circular RNAs (circRNAs) are novel endogenous non-coding RNAs that are generated by reverse-splicing of precursor mRNA derived from various genes in mammals. Despite low expression, recent studies have shown that circRNA plays an important role in skeletal muscle myogenesis with competing endogenous RNA (ceRNA) functions. However, the potential regulatory role of circRNAs and interactions with miRNAs remain largely unexplored, and the function of circRNAs as miRNA sponges is not yet generally accepted. In this review, we outline the biogenesis and ceRNA mechanisms of circRNAs as well as their involvement in skeletal muscle myogenesis and discuss the conflicting conclusions of recent circRNA-ceRNA studies.


Assuntos
Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , RNA Circular/genética , RNA/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...